THE IMPULSE The membrane of a glial cell is wrapped around and around an axon, shown in cross section in this enlarged electron microscopic view. The encircling membrane is myelin, which speeds nerve impulses by raising the resistance and lowering the capacitance between inside and outside. The axon contains a few organelles called microtubules. When the nerve is at rest, most but not all potassium channels are open, and most sodium channels are closed; the charge is consequently positive outside. During an impulse, a large number of sodium pores in a short length of the nerve fiber suddenly open, so that briefly the sodium ions dominate and that part of the nerve suddenly becomes negative outside, relative to inside. The sodium pores then reclose, and meanwhile even more potassium pores have opened than are open in the resting state. Both events--the sodium pores reclosing and additional potassium pores opening--lead to the rapid restoration of the positive- outside resting state. The whole sequence lasts about one- thousandth of a second. All this depends on the circumstances that influence pores to open and close. For both Na+ and K+ channels, the pores are sensitive to the charge across the membrane. Making the membrane less positive outside--depolarizing it from its resting state--results in the opening of the pores. The effects are not identical for the two kinds of pores: the sodium pores, once opened, close of their own accord, even though the depolarization is maintained, and are then incapable of reopening for a few thousandths of a second; the potassium pores stay open as long as the depolarization is kept up. For a given depolarization, the number of sodium ions entering is at first greater than the number of potassium ions leaving, and the membrane swings negative outside with respect to inside; later, potassium dominates and the resting potential is restored.